Narodowe Centrum Badań Jądrowych (NCBJ), Organizacja Badań Akceleratorów Wysokich Energii (KEK) i Uniwersytet Tokijski (UTokyo) podpisały protokół uzgodnień, którego celem jest promowanie międzynarodowego projektu naukowo-badawczego Hyper-Kamiokande.
W skład konsorcjum wchodzi dziewięć polskich instytucji: Instytut Fizyki Jądrowej PAN, Uniwersytet Śląski, Narodowe Centrum Badań Jądrowych (NCBJ), które jest jego koordynatorem, Politechnika Warszawska (PW), Uniwersytet Warszawski, Uniwersytet Wrocławski, Akademia Górniczo-Hutnicza, Uniwersytet Jagielloński i Centrum Astronomiczne im. Mikołaja Kopernika (CAMK).
Celem przedsięwzięcia jest wybudowanie na terenie Japonii detektora badającego historię ewolucji Wszechświata. Za jego pomocą podjęta zostanie próba wyjaśnienia Teorii Wielkiej Unifikacji. Plany zakładają, że pierwsze dane naukowe na ten temat zostaną uzyskane za 5 lat.
Wśród przewidywanych wkładów konsorcjum znajduje się opracowanie, produkcja i instalacja liniowego akceleratora elektronów, kompozytowych modułów fotodetektorów, modułów obwodów elektronicznych. Oprócz Polski, w budowę i promowanie Hyper-Kamiokande zaangażowanych jest dwanaście krajów z trzech kontynentów.
Jak podano w komunikacie, przewiduje się, że detektor Hyper-Kamiokande będzie miał całkowitą masę osiem razy większą niż jego poprzednik Super-Kamiokande i będzie wyposażony w nowo opracowane fotodetektory o wysokiej czułości. Celem projektu jest wyjaśnienie Teorii Wielkiej Unifikacji i dostarczenie informacji o historii ewolucji Wszechświata poprzez badanie rozpadu protonów i pomiary efektów łamania symetrii CP (asymetrii między neutrinami i antyneutrinami), a także obserwacja neutrin pochodzących z wybuchów supernowych. Budżet budowy został zatwierdzony przez parlament japoński w lutym 2020 r., co oznaczało oficjalne rozpoczęcie projektu.
Jak wskazała prof. dr hab. Ewa Rondio, zastępca dyrektora NCBJ ds. naukowych, kierująca w NCBJ projektem Hyper-Kamiokande, zespoły zaangażowane w ten projekt współpracują z zespołami japońskimi już od wielu lat przy projekcie T2K i Super-Kamiokande. Badania nad neutrinami prowadzone w Japonii doprowadziły do dwóch osiągnięć uhonorowanych nagrodami Nobla: obserwacji neutrin ze źródeł astrofizycznych, a następnie odkryciem zjawiska oscylacji neutrin.
Pierwszą z tych nagród w roku 2002 dostali Raymond Davis Jr. (USA) i Masatoshi Koshiba (Japonia) za detekcję kosmicznych neutrin. Obserwacja dotyczyła neutrin ze Słońca i z wybuchu supernowej w detektorze Kamiokande. Drugą w roku 2015 otrzymali Japończyk Takaaki Kajita i Kanadyjczyk Arthur B. McDonald, którzy odkryli oscylację neutrin. Prof. T. Kajita pracował w eksperymencie Super-Kamiokande, a teraz jest koordynatorem zespołu uczestniczącego w budowie Hyper-Kamiokande (trzecia generacja) na Uniwersytecie w Tokyo.
Obserwacja zjawiska oscylacji neutrin dowodzi, że neutrina mają niezerową masę spoczynkową, co jest bardzo ważne dla naszych wyobrażeń o elementarnych składnikach materii i ich oddziaływaniach.
- Uczestnicząc w przygotowaniu eksperymentu kolejnej generacji, Hyper-Kamiokande, bierzemy udział w projekcie bardzo ambitnym i wykorzystującym najnowocześniejsze technologie do osiągnięcia wielkiej precyzji planowanych pomiarów – podkreśliła prof. dr hab. Rondio, cytowana w komunikacie.
- Projekt Hyper-Kamiokande został zatwierdzony na Polskiej Mapie Drogowej Infrastruktur Badawczych. Planowany udział polskiego konsorcjum w budowie eksperymentu, a później w pomiarach i opracowaniu wyników, daje szanse rozwijania nowoczesnych, bardzo czułych detektorów światła i elektroniki wymaganej do ich obsługi – dodała.
W dwóch warszawskich instytucjach – na Politechnice Warszawskiej i w Centrum Astronomicznym im. Mikołaja Kopernika – zostanie zbudowanych kilkaset fotodetektorów, a systemy odczytu ich danych będą tworzone także w Krakowie na UJ i AGH.
Budowa elementów Hyper-Kamiokande wymaga również udziału polskiego przemysłu. Z kolei w NCBJ powstanie akcelerator elektronów dedykowany do precyzyjnej kalibracji detektora wraz z linią prowadzenia wiązki. W tym zadaniu zostaną wykorzystane doświadczenia w budowie akceleratorów elektronowych w Świerku dostarczanych m.in. do CERN.
Źródło: https://www.uj.edu.pl